${\tt ISTANBUL\ TECHNICAL\ UNIVERSITY-FACULTY\ OF\ CHEMICAL\ \&\ METALLURGICAL\ ENGINEERING}$ ### SELF STUDY REPORT APPENDIX A COURSE SYLLABUS | Course Name | | | | | | | | | | | | |---|-------------|---|--|---------|----------------------------------|------------------|------------|---------------|--------------|--|--| | Chemical Metal | lurgy | | | | | | | | | | | | Code | Somo | nester Local Credits ECTS Course Implementation, Hours/Wee | | | /Week | | | | | | | | | | | Local Credits | Credits | Theo | retical | 1 | Γutorial | Laboratory | | | | MET 321 | 5 | | 4 | 5 | | 4 | | 0 - | | | | | Department/Pro | gram | | allurgical and Mater | | | | I - | | | | | | Course Type | • • • • • • | Requ | | | Course L | anguage | Turkish | | | | | | Course Prerequ | ISITES | | 231 min FF, Met 23 | Engine | | Engin | eering | Canara | I Education | | | | Course Category by Content, % | | ь | asic sciences | Scie | | | sign | Genera | ai Luucation | | | | | | | - | 70 | | | % | | - | | | | Course Descript | tion | Raw materials (ore, concentrate and recycled materials). Pyrometallurgy (oxide, chloride, sulphide and carbide formation using Ellingham diagrams, vapor pressure-temperature relation of metal compounds, roasting, evaporation using P-T diagrams, calcination, matte formation/smelting, slag formation/smelting, reduction, reduction smelting processes, refining). Hydrometallurgy (leaching, solution processing, EMF series, solvent extraction, Mc-Cabe Thiele diagrams). Electrometallurgy (cementation, electrowinning, electrorefining, fused salt | | | | | | | | | | | electrolysis, Polarization diagrams). General knowledge of reaction kintetics. 1. To provide fundamental concepts utilized in Metallurgical and Materalong with examples from the real-life applications, indicating that the not just "notions" but must be recognized as a whole. 2. To teach all the methods and processes employed on the route "from | | | | | al and Materi
cating that the | ese concepts are | | | | | | | Course Learning Outcomes Textbook Other Reference | | To teach all the methods and processes employed on the route "from ore to metal", in a manner of providing an infrastructure for other courses. Students who pass the course will be able to: I. Identify metallurgical raw materials, pretreatment operations, ore processing methods, surface enlargement and reduction operations and separation techniques. II. Learn the general characteristics of pyrometallurgical processes; chlorination, sulfatizing, oxidizing, sinter roasting, alkaline roasting, selective vaporization, selective decomposition, calcination, matte forming/smelting, slag forming/smelting, reduction and reduction with non-metallic compounds. III. Understand reducing melting operations, reducing vaporization operations, reduction in molten state, metallothermic reduction (aluminothermy, silicothermy, magnesiothermy). IV. Know pyrometallurgical raffination operations, fire raffination of copper, segregation and drossing, raffination in gaseous state, zone raffination. V. Comprehend the general characteristics of hydrometallurgy; dissolution operations, insitu leach, heap leach, percolation leach, pressure leach, solution processing, crystallization. VI. Learn precipitation with chemical additives, precipitation with gases, selective precipitation under pressure, total precipitation under pressure, solvent Extraction, McCabe-Thiele diagrams and applications, reaction kinetics. VII. Identify the general characteristics of electrometallurgy; cementation, electrowinning, electrorefining, fused salt electrolysis, polarization diagrams. VIII. Learn the flow diagram for production and refining of a certain metal related to its physicochemical characteristics. F.Habashi, Handbook of Extractive Metallurgy, Wiley-Vch, 1997. I.Duman, Kimyasal Metallurgi Ders Sunulari, 2004. | | | | | | | | | | | Homework & Projects Laboratory Wor | ·k | | awlek, Metallhütten
h workteam (consi | | | | | ework. | | | | | Other Activities | | | | | | <u>-</u> | | | | | | | Assessment Cr | | Acti | vities | | Quar | itity | Effe | ects on Gradi | ng, % | | | | | | | term Exams | | MIN | 11 | | 20 % | | | | | | | | zzes | | MIN | | | 10 % | | | | | | | | nework | | MIN | 1 | | 10 % | | | | | | | | jects | | - | | | - | | | | | | | | n Paper/Project | | - | | | - | | | | | | | | oratory Work
er Activities | | - | | | - | | | | | | | | er Activities
al Exam | | 1 | | | 60 % | | | | | | | ГШ | ai Laaiii | | | | | OU % | | | | # ${\tt ISTANBUL\ TECHNICAL\ UNIVERSITY-FACULTY\ OF\ CHEMICAL\ \&\ METALLURGICAL\ ENGINEERING}$ ## DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING ## SELF STUDY REPORT APPENDIX A COURSE SYLLABUS #### **COURSE PLAN** | Weeks | Topics | Course
Outcome
s | |-------|--|------------------------| | 1 | Raw materials (ore, concentrate, scrap) and pretreatment methods | I | | 2 | Separation Techniques | I | | 3 | Pyrometallurgical processes | II | | 4 | Reduction Methods | III | | 5 | Reduction Methods | III | | 6 | Raffination Operations | IV | | 7 | Raffination Operations | IV | | 8 | Raffination Operations | IV | | 9 | Hydrometallurgical Processes | V | | 10 | Precipitation Operations | VI | | 11 | The principles of electrometallurgy | VII | | 12 | Electrometallurgical Applications | VII | | 13 | The Presentation of Teamworks | | | 14 | Flow Diagrams | VIII | ### Relationship between the Course and Metallurgical and Materials Engineering Curriculum | | Program Outcomes | | | Level of Contribution | | | |---|---|---|---|-----------------------|--|--| | | | 1 | 2 | 3 | | | | 1 | Ability to apply the knowledge of mathematics, science and engineering principles to solve problems in metallurgical and materials engineering (ABET:a) | | | X | | | | 2 | Ability to characterize materials using standard and/or self designed experimental methods and to evaluate the results (ABET:b) | | | | | | | 3 | Ability to design a system or a process, taking into consideration of the desired specifications, quality, ethics and environment. (ABET:c) | х | | | | | | 4 | Ability to communicate both orally and in the written form and to take part in, and provide leadership of the teams in the elucidation of engineering problems; (ABET:d, g) | | х | | | | | 5 | Ability to define, formulate and solve engineering problems in the development, production, processing, protection and usage of engineering materials. (ABET:e) | | | х | | | | 6 | An understanding of professional and ethical responsibilities(ABET:f) | х | | | | | | 7 | An understanding of current/contemporary issues and impact of engineering solutions in broad cultural, national and global levels;. (ABET:h, j) | | х | | | | | 8 | A comprehension of the nature of engineering progress closely linked with the development of new materials and production processes. An ability to engage in life-long learning and a recognition of its necessity (ABET:i) | | х | | | | | 9 | Ability to use essential tools and techniques of modern engineering in the development, production, processing, protecting and surface treatment of the existing and new engineering materials. (ABET:k) | | | х | | | ### 1: Little, 2. Partial, 3. Full Course relationships with major elements of the field and material classes | | | | evel o | | |------------------|--------------------------------|---|--------|---| | | | 1 | 2 | 3 | | | STRUCTURE | | Х | | | | PROPERTIES | | X | | | MAJOR ELEMENT OF | DESIGN EXPERIMENT/ANALYSE DATA | х | | | | THE FIELDS | PROCESSING | | | Х | | THE FIELDS | COST/PERFORMANCE | | Х | | | | QUALITY/ENVIRONMENT | | Х | | | | DESIGN PROCESS OR PRODUCT | | | х | | | METAL | | | X | | MATERIAL CLASSES | CERAMICS | | | х | | WATERIAL CLASSES | POLYMERS | | | | | | COMPOSITES | | | | #### 1: Little, 2. Partial, 3. Full | Prepared by | Date | Signature | |------------------------|------------|-----------| | Prof. Dr. İsmail DUMAN | 27.07.2009 | |