Code S MET 366E Department/Progra Course Type Course Prerequisite Course Category by Content, % Course Description Course Objectives	Electives None Basic Introdu Materi materi technol capac and ca Applic manuf 1. To o	c Sciences 	Engineerin 40 ergy and its u rgy Harvestin and nuclear eir manufactu en storage an erials used fo	Theoreti 2 ineering Course Langu og Science 0 use and impo ng (solar end power, therr uring method	cal Jage Engine rtance ergy n		Laboratory - General Education 20 d Materials Engineering voltaic materials, batter
Department/Progra Course Type Course Prerequisite Course Category by Content, %	m Metalli Electives None Basic Introdu Materi materi techno capac and c Applic manuf	c Sciences 	Aaterials Eng Engineerin 40 ergy and its u rgy Harvestin and nuclear eir manufactu en storage al erials used fo	ineering Course Langu ag Science 0 use and impo ng (solar end power, therr uring method	Engine rtance ergy m	eering Design 40 in Metallurgy an	General Education 20 ad Materials Engineering
Course Type Course Prerequisito Course Category by Content, % Course Description	Electives None Basic Introdu Materi materi technol capac and ca Applic manuf 1. To o	c Sciences - uction to Enerals for Enerals for Enerals for wind ology and the itors, hydrog- pooling). Mate ations and f	Engineerin 40 ergy and its u rgy Harvestin and nuclear eir manufactu en storage al erials used fo	Course Langu Ig Science 0 Use and impond ng (solar end power, therr uring method	Engine rtance ergy m	eering Design 40 in Metallurgy an	20 Id Materials Engineering
Course Prerequisit Course Category by Content, % Course Description	es None Basic Introdu Materi materi techno capac and ca Applic manuf	c Sciences - uction to Ene als for Ene als for wind blogy and the tors, hydrog pooling). Mate ations and f	Engineerin 40 ergy and its u rgy Harvestin and nuclear eir manufactu en storage an erials used fo	ag Science 0 use and impo ng (solar end power, therr uring method	Engine rtance ergy m	eering Design 40 in Metallurgy an	20 Id Materials Engineering
Course Category by Content, % Course Description	Basic Introdu Materi materi techno capac and c Applic manuf 1. To o	- als for Ener als for wind plogy and the tors, hydrog poling). Mate ations and f	40 rgy and its u rgy Harvestin and nuclear eir manufactu en storage an erials used fo	0 use and impo ng (solar end power, therr uring method	rtance ergy m	40 in Metallurgy an	20 Id Materials Engineering
by Content, %	Introdu Materi materi techno capac and ca Applic manuf 1. To o	- als for Ener als for wind plogy and the tors, hydrog poling). Mate ations and f	40 rgy and its u rgy Harvestin and nuclear eir manufactu en storage an erials used fo	0 use and impo ng (solar end power, therr uring method	rtance ergy m	40 in Metallurgy an	20 Id Materials Engineering
	Materi materi techno capac and co Applic manuf	als for Ener als for wind blogy and the itors, hydrog boling). Mate ations and f	rgy Harvestir and nuclear eir manufacti en storage a erials used fo	ng (solar end power, therr uring method	ergy n		
Course Objectives	1. To o	<u> </u>		nd their appli or energy effi for energy m	s. Mat cations ciency	tric materials, m erials used in e). Materials for h in industry. No	aterials used in fuel ce nergy storage (batteries housing (lighting, heatin vel Materials for Energ aterials (basic principles
	2. To effic	describe mat r manufactur explain the i	erials used ir ing processe mportance of	n various ene s. f energy effic	iency,	introduce the ma	rage industries and teac aterials providing energ tudies for energy efficier
Course Learning Outcomes	1. Ider 2. Lea nuc prod 3. Lea ligh 4. Kno 5. Ider dev	rn the mate lear, battery cesses of the rn the materi ting, cooling w which mat htify the nove elopments m	rials used in hydrogen s se materials. als which pre- and heating. rerials are use al materials a lade for energ	evarious ene torage, capa event serious ed for energy and technolog gy saving in n	rgy ha citors consur efficier gies us nateria	and thermoeled nptions of energy ncy in industrial p sed in energy ap ls science.	ies such as solar, wind ctric and manufacturin y in everyday life such a processes. oplications and the lates
Textbook Kreith F. ve Goswami D. Y., Handbook of Energy Efficiency and F & Francis, 2007.			fficiency and Re	newable Energy, Taylor			
Other References Homework & Projects	1.Mar Sys 2.Mez Spr	tin F., Mater tems, Elsevio zane D., Lu inger, 2008. awal J. P., Hi	er, 2008. k'yanchuk I.,	Smart Mater	ials for	Energy, Comm	of Materials for Energy nunications and Securtiy Pyrotechnics, Wiley- Vch
Frojects							
Laboratory Work	-						
Computer Use	-						
Other Activities	-						0
Assessment Criter	ia Quizz Home Proje Term	rm Exams es work		Quantit	y	Effects	on Grading, % 40 60

COURSE PLAN				
Weeks	Topics	Course Outcomes		
1	Introduction to Energy and its use in Metallurgy and Materials Engineering	1		
2	Energy Consumption And Emmission Levels in Metallurgical Prosesses	1, 2		
3	Materials for Energy Harvesting (Materials for Wind and Nuclear Power)	1, 2		
4	Materials for Energy Harvesting (Thermoelectric Materials)	1, 2		
5	Materials for Energy Transformation (Fuel Cell Materials and Components)	1, 2		
6	Materials for Energy Transformation (Fuel Cell Materials and Components)	1, 2		
7	Materials for Energy Harvesting (Solar Energy Materials and Photovoltaic Materials)	1, 2		
8	Materials for Energy Storage (Materials for Batteries and Capacitors)	1,2		
9	Materials for Energy Storage (Hydrogen Storage Materials)	1, 2		
10	Materials for Industrial Energy Efficiency	3,4		
11	Guest Lecturer from Industry on Energy Materials and Energy Applications	3,4		
12	Energetic Materials and their applications	5		
13	Student Presentation	5		
14	Student Presentation	5		

Relationship between the Course and Metallurgical and Materials Engineering Curriculum

	Student Outcomes			Level of Contribution		
		1	2	3		
1	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering science and mathematics		x			
2	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare as well as global, cultural, social, environmental and economic factors			X		
3	an ability to communicate effectively with a range of audiences		Х			
4	an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts			X		
5	an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives		x			
6	an ability to develop and conduct appropriate experimentation, analyse and interpret data, and use engineering judgement to draw conclusions					
7	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies	Х				

1: Little, 2: Partial, 3: Full

Course relationships with major elements of the field and material classes

			Level	of
		Co	ntribu	tion
		1	2	3
	STRUCTURE		X	
	PROPERTIES		X	
	DESIGN EXPERIMENT/ANALYSE DATA			
MAJOR ELEMENT OF THE FIELDS	PROCESSING		X	
THE FIELDS	COST/PERFORMANCE			Х
	QUALITY/ENVIRONMENT			Х
	DESIGN PROCESS OR PRODUCT			
	METAL		X	
	CERAMICS AND GLASS		Х	
MATERIAL CLASSES	POLYMER		Х	
	COMPOSITES		Х	
	BIOMATERIALS			

1: Little, 2: Partial, 3: Full

Prepared by	Date	Revision #	Signature
Prof. Dr. Onuralp YÜCEL Prof. Dr. Sebahattin GÜRMEN Prof. Dr. Özgül KELEŞ	December 2020		